

p-Block Elements (Halogen & Noble Gases)

Section (A) : Elements: Occurrence & Isolation

Introduction :

The five representative elements fluorine (F), chlorine (Cl), bromine (Br), iodine (I) and astatine (At) are members of Group 17. These are collectively known as the **halogens** (Greek halo means salt and genes means born i.e., salt producers). The halogens are highly reactive non-metallic elements. Like Groups 1 and 2, the elements of Group 17 show great similarity amongst themselves. That much similarity is not found in the elements of other groups of the periodic table.

GROUP 17 ELEMENTS : THE HALOGENS FAMILY

Occurrence :

All halogens are very reactive & do not occur in free state.

Element	Abundance	Source	
F	544 ppm (13 th most abundant element)	♦ Main Source : Fluorspar (CaF_2) or Fluorite	♦ Another Source : Fluoroapatite $[\text{Ca}_3(\text{PO}_4)_2 \cdot \text{CaF}_2]$ (Mainly source of P) Cryolite : Na_3AlF_6
Cl	126 ppm (20 th most abundant element)	♦ Most abundant compound of Cl : NaCl (Sea water) Carnalite : $\text{KCl} \cdot \text{MgCl}_2 \cdot 6\text{H}_2\text{O}$.	
Br	2.5 ppm	♦ Bromides occurs in sea water & brine lakes	
I	0.46 ppm	♦ Iodides occurs in low conc. in sea water. ♦ Better source : Natural brines ♦ Impurities (NaIO_3 & NaIO_4) in Chile salt petre (NaNO_3)	
At	Radioactive & has a short half-life ($t_{1/2} = 7.2$ Hr.)	♦ Do not occur in nature	

Allotropy :

All the elements of halogen family generally do not show allotropy.

Atomicity :

All halogens exist as diatomic (X_2) molecule.

Element Preparation

Fluorine

S.No.	Method	Process	Comments
1.	Moisson's Method (Electrolytic)	$\text{CaF}_2 + \text{H}_2\text{SO}_4 \rightarrow \text{CaSO}_4 + 2\text{HF}$ (Conc.)	
		$\text{KF} + \text{HF} \rightarrow \text{K}[\text{HF}_2]$	• $\text{K}[\text{HF}_2] \Leftrightarrow \text{K}^+[\text{F}-\text{H}-\text{F}]^-$
		Fluorine cell : Electrodes : Anode : Carbon Cathode : Steel Electrolyte : KHF_2 (1 part) + HF (5 part) Temperature of the both : -24°C	• Anhydrous HF is only slightly ionized & is therefore a poor conductor of electricity. Thus a mixture of KF & HF in 1 : 13 mole ratio is electrolysed to increase the conductivity.
		Reaction : $\text{K}[\text{HF}_2] \rightarrow \text{KF} + \text{HF}$ $\text{KF} \rightarrow \text{K}^+ + \text{F}^-$	Difficulties: • HF is corrosive & also very toxic • H_2O should not be present. Otherwise F_2 will oxidize H_2O to O_2 $2\text{F}_2 + 2\text{H}_2\text{O} \rightarrow 4\text{HF} + \text{O}_2$
		On electrolysis : At cathode : $\text{K}^+ + \text{e}^- \rightarrow \text{K}$ $\text{K} + \text{HF} \rightarrow \text{KF} + \text{H}$ $2\text{H} \rightarrow \text{H}_2(\text{g})$ At Anode : $\text{F}^- \rightarrow \text{F} + \text{e}^-$ $2\text{F} \rightarrow \text{F}_2$	• Graphite anodes must not be used, since graphite reacts with fluorine, forming a polymeric substance known as graphite fluoride.
		Modern method : Electrolyte : KF : HF = 1 : 2 Temperature : 72°C	
		Note : It is not possible to prepare fluorine by electrolysis of aqueous solution of NaF or KF. It is because when aqueous solution of KF is subjected to electrolysis, there will be following two oxidation in competition at anode, $\text{H}_2\text{O} \rightarrow 1/2\text{O}_2 + 2\text{H}^+ + 2\text{e}^-$ SOP = -1.23 V and $\text{F}^- \rightarrow 1/2\text{F}_2 + \text{e}^-$ SOP = -2.87 V As a matter of rule that substance will be oxidise whose SOP is higher therefore water gets oxidise at anode and not F^- .	
2.	Chemical Method	$2\text{KMnO}_4 + 2\text{KF} + 10\text{HF} + 3\text{H}_2\text{O}_2 \rightarrow 2\text{K}_2\text{MnF}_6 + 8\text{H}_2\text{O} + 3\text{O}_2$ $\text{K}_2[\text{MnF}_6] + 2\text{SbF}_5 \rightarrow 2\text{K}[\text{SbF}_6] + \text{MnF}_3 + \text{F}_2$ $\left\{ \begin{array}{l} \text{via} \\ \text{MnF}_4 \rightarrow \text{MnF}_3 + \frac{1}{2}\text{F}_2 \end{array} \right\}$	• The stronger Lewis acid SbF_5 displaces the weaker one, MnF_4 from its salt. • MnF_4 is unstable and readily decomposes to give MnF_3 and fluorine.

Chlorine

S.No.	Method	Process	Comments
1.	Laboratory Preparation	$\text{H}_2\text{SO}_4 + \text{NaCl} \rightarrow \text{HCl} + \text{NaHSO}_4$ $4\text{HCl} + \text{MnO}_2 \rightarrow \text{MnO}_2 + 2\text{H}_2\text{O} + \text{Cl}_2 \uparrow$	• HCl is purified first passed through H_2O then through conc. H_2SO_4 to remove H_2O further dried by CaO & P_4O_{10}
2.	Commercially:		
(i)	By electrolysis of aq. NaCl solution in the manufacture of NaOH	$2\text{NaCl} + 2\text{H}_2\text{O} \xrightarrow{\text{Electrolyte}} 2\text{NaOH} + \text{Cl}_2 + 2\text{H}_2$ $2\text{NaCl} \xrightarrow{\text{Electrolyte}} 2\text{Na} + \text{Cl}_2$	

(ii)	Deacon's process	$4\text{HCl} + \text{O}_2 \xrightleftharpoons[440^\circ\text{C}]{\text{CuCl}_2 \text{ Catalyst}} 2\text{Cl}_2 + 2\text{H}_2\text{O} + \Delta$	<ul style="list-style-type: none"> • Air is used to oxidize HCl instead MnO₂ • Reaction is reversible • Conversion 65%
(iii)	Electrolysis of Brine	<p>Reactions:</p> <p>At Anode : $2\text{Cl}^- \rightarrow \text{Cl}_2 + 2\text{e}^-$</p> <p>At cathode : $\text{Na}^+ + \text{e}^- \rightarrow \text{Na}$</p> <hr/> $2\text{Na} + 2\text{H}_2\text{O} \rightarrow 2\text{NaOH} + \text{H}_2$ <p>Side reactions may also occur if the products mix:</p> $2\text{NaOH} + \text{Cl}_2 \rightarrow \text{NaCl} + \text{NaOCl} + \text{H}_2\text{O}$ $2\text{OH}^- + \text{Cl}_2 \rightarrow 2\text{OCl}^- + \text{H}_2$ <p>(Hypochlorite)</p> <p>At anode (small extent reaction) :</p> $4\text{OH}^- \rightarrow \text{O}_2 + 2\text{H}_2\text{O} + 4\text{e}^-$	
3.	Miscellaneous Reactions	<p>(a) $[\text{NaCl} + \text{HNO}_3 \rightarrow \text{NaNO}_3 + \text{HCl}] \times 3$ $\text{HNO}_3 + 3\text{HCl} \rightarrow \text{NOCl} + \text{Cl}_2 + 2\text{H}_2\text{O}$ $3\text{NaCl} + 4\text{HNO}_3 \rightarrow 3\text{NaNO}_3 + \text{NOCl} + \text{Cl}_2 + 2\text{H}_2\text{O}$ <p>(nitrosyl chloride)</p> <hr/> $2\text{NOCl} + \text{O}_2 \rightarrow 2\text{NO}_2 + \text{Cl}_2$ $\text{NO}_2 + \text{H}_2\text{O} \rightarrow \text{HNO}_3$ (to be recycled) <p>(b) $\text{Ca} \begin{array}{c} \text{OCl} \\ \diagup \\ \diagdown \\ \text{Cl} \end{array} + 2\text{HCl} \rightarrow \text{CaCl}_2 + \text{Cl}_2 + \text{H}_2\text{O}$</p> <hr/> <p>(c) $2\text{KMnO}_4 + 16\text{HCl} \rightarrow 2\text{KCl} + 2\text{MnCl}_2 + 5\text{Cl}_2 + 8\text{H}_2\text{O}$</p> <hr/> <p>(d) $\text{PbO}_2 + 4\text{HCl} \rightarrow \text{PbCl}_2 + \text{Cl}_2 + 2\text{H}_2\text{O}$</p> <hr/> <p>(e) When Cl₂ is used for the chlorination of hydrocarbon, the by-product is HCl. The HCl is catalytically oxidised into H₂O & Cl₂ using copper powder mixed with rare earth chlorides.</p> $4\text{HCl} + \text{O}_2 \xrightarrow{\text{Cu powder + rare earth chloride}} 2\text{H}_2\text{O} + 2\text{Cl}_2$ </p>	<ul style="list-style-type: none"> • These methods are exclusively used only for chlorine.

Bromine:

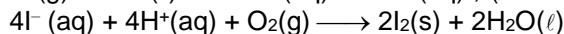
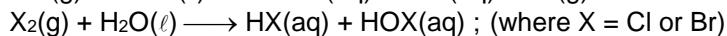
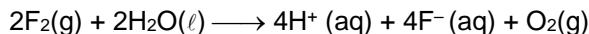
S.No.	Method	Process
1.	Extracted from sea water	<ul style="list-style-type: none"> • Cl₂ gas passed through solution to oxidize Br⁻ to Br₂ $\text{Cl}_2 + 2\text{Br}^- \rightarrow 2\text{Cl}^- + \text{Br}_2$ <p style="text-align: center;">↓</p> <p>Removed by steam of air & passed to solution of Na₂CO₃.</p> <p>Reactions :</p> $3\text{Br}_2 + 3\text{Na}_2\text{CO}_3 \rightarrow 5\text{NaBr} + \text{NaBrO}_3 + 3\text{CO}_2$ $5\text{NaBr} + \text{NaBrO}_3 + 2\text{H}_2\text{SO}_4 \rightarrow 5\text{HBr} + \text{HBrO}_3 + 3\text{Na}_2\text{SO}_4$ $5\text{HBr} + \text{HBrO}_3 \rightarrow 3\text{Br}_2 + 3\text{H}_2\text{O}$ <p style="text-align: center;">↓</p> <p>Pure Bromine</p>
2.	Common method	$2\text{NaBr} + 3\text{H}_2\text{SO}_4 + \text{MnO}_2 \xrightarrow[\text{(conc.)}]{\Delta} \text{Br}_2 + \text{MnSO}_4 + 2\text{NaHSO}_4 + 2\text{H}_2\text{O}$

Iodine:

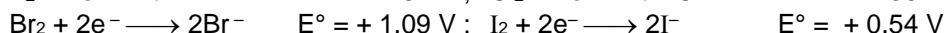
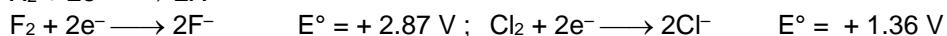
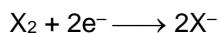
		Process	Comments
S.No.	Method		
1.	Source : Chile saltpetre	<ul style="list-style-type: none"> Pure NaNO_3 is obtained by dissolving salt petre in H_2O & crystallizing NaNO_3 Iodate residues thus accumulated & concentrate in mother liquor Concentrate \rightarrow divided into 2 part <ul style="list-style-type: none"> <u>1st part</u> reduced with NaHSO_3 $2\text{IO}_3^- + 6\text{HSO}_3^- \rightarrow 2\text{I}^- + 6\text{SO}_4^{2-} + \text{OH}^-$ <u>2nd part</u> is mixed $3\text{I}^- + \text{IO}_3^- + 6\text{H}^+ \rightarrow 3\text{I}_2 + 3\text{H}_2\text{O}$ 	<ul style="list-style-type: none"> Chile salt petre is mainly NaNO_3 Contain traces of NaIO_3 (Sodium iodate) & NaIO_4 (Sodium periodate) Purified by sublimation
2.	Source: Natural blue	$2\text{I}^- + \text{Cl}_2 \rightarrow \text{I}_2 + 2\text{Cl}^-$ ↓ blown out by air	
3.	From sea-weeds:	$2\text{NaI} + \text{MnO}_2 + 3\text{H}_2\text{SO}_4 \rightarrow 2\text{NaHSO}_4 + \text{MnSO}_4 + \text{I}_2 + 2\text{H}_2\text{O}$	<ul style="list-style-type: none"> Liberated iodine is condensed in series of earthen ware known as aludels.
4.	Other Method	$\text{CuSO}_4 + 2\text{KI} \rightarrow \text{K}_2\text{SO}_4 + \text{CuI}_2$ $2\text{CuI}_2 \rightarrow \text{Cu}_2\text{I}_2 + \text{I}_2$	<ul style="list-style-type: none"> This I_2 gets dissolved into KI forming KI_3, since I_3^- ions are yellow, therefore solution develops yellow colour.

Section (B_I + C_I + D_I) : Periodic Trends, Properties of Elements and Chemical Bonding Atomic & Physical Properties :

S.No.	Property	F	Cl	Br	I
1.	Atomic Number	9	17	35	53
2.	Atomic Mass/g mol ⁻¹	19	35.45	79.90	126.90
3.	Electronic configuration General electronic configuration=($ns^2 np^5$)	[He] $2s^2 2p^5$	[Ne] $3s^2 3p^5$	[Ar] $3d^{10} 4s^2 4p^5$	[Kr] $4d^{10} 5s^2 5p^5$
4.	Covalent Radius / pm ($F < Cl < Br < I$)	64	99	114	133
5.	Ionic Radius X ⁻ / pm ($F < Cl < Br < I$)	133	184	196	220
6.	Ionization enthalpy / (kJ mol ⁻¹) ($F > Cl > Br > I$)	1680	1256	1142	1008
		<ul style="list-style-type: none"> Due to increase in atomic size, ionisation enthalpy decreases down the group. 			
7.	Electron gain enthalpy / (kJ mol ⁻¹) ($Cl > F > Br > I$)	-333	-349	-325	-296
		<ul style="list-style-type: none"> Maximum negative electron gain enthalpy in the corresponding period. Negative electron gain enthalpy of fluorine < chlorine: Due to small size of fluorine atom. As a result, there are strong inter-electronic repulsions in the relatively small 2p orbitals of fluorine and thus, the extra electron (incoming) does not experience much attraction. 			
8.	Distance X-X/pm ($F_2 < Cl_2 < Br_2 < I_2$)	143	199	229	266
9.	Enthalpy of dissociation (X ₂)/kJ mol ⁻¹ ($Cl - Cl > Br - Br > F - F > I - I$)	158.8	242.6	192.8	151.1
		<ul style="list-style-type: none"> Smaller enthalpy of dissociation of F_2 is due to relatively larger electron-electron repulsion among the lone pairs in F_2 molecule. 			
10.	Electronegativity ($F > Cl > Br > I$)	4	3.2	3.0	2.7
11.	Melting point / K ($F < Cl < Br < I$)	54.4	172	265.8	386.6

12.	Boiling point / K ($F < Cl < Br < I$) (State at room temp.)	84.9 Gas	239.0 Gas	332.5 Liquid	458.2 Solid
13.	$\Delta_{\text{Hyd}}H (X^-) / \text{kJ mol}^{-1}$ ($F > Cl > Br > I$)	515	381	347	305
14.	$E^\circ / \text{V (SRP)} ; X_2(\text{g}) + 2e^- \rightarrow 2X^-(\text{aq})$ ($F_2 > Cl_2 > Br_2 > I_2$) (Order of oxidising power)	2.87 ♦ Smaller the ion, higher is the hydration energy.	1.36	1.09	0.54
15.	Colour (at room temp.)	Pale green yellow gas.	Greenish-yellow gas	Reddish brown liquid	Dark violet solid
16.	Oxidization state	-1	-1, +1, +3, +5, +7	-1, +1, +3, +5, +7	-1, +1, +3, +5, +7




CHEMICAL PROPERTIES :

Oxidation states and trends in chemical reactivity

- (1) All the halogens exhibit -1 oxidation state. However, chlorine, bromine and iodine exhibit +1, +3, +5 and +7 oxidation states also.
- (2) The higher oxidation states of chlorine, bromine and iodine are realised mainly when the halogens are in combination with the small and highly electronegative fluorine and oxygen atoms e.g., in interhalogens, oxides and oxoacids.
- (3) The fluorine atom has no d orbitals in its valence shell and therefore cannot expand its octet. Being the most electronegative, it exhibits only -1 oxidation state.
- (4) All the halogens are highly reactive. They react with metals and non-metals to form halides. The reactivity of the halogens decreases down the group.
- (5) The ready acceptance of an electron is the reason for the strong oxidising nature of halogens. F_2 is the strongest oxidising halogen and it oxidises other halide ions in solution or even in the solid phase.
- (6) The decreasing oxidising ability of the halogens in aqueous solution down the group is evident from their standard electrode potentials.
- (7) Fluorine oxidises water to oxygen whereas chlorine and bromine react with water to form corresponding hydrohalic and hypohalous acids.
- (8) The reactions of iodine with water is non-spontaneous I^- can be oxidised by oxygen in acidic medium; just the reverse of the reaction observed with fluorine.

Standard Reduction Potential (SRP)

More the value of the SRP, more powerful is the oxidising agent. Hence the order of oxidising power is $F_2 > Cl_2 > Br_2 > I_2$

Since SRP is the highest for F_2 (among all elements of periodic table), it is a strongest oxidising agent.

Hydration energy of X^-

Smaller the ion, higher is the hydration energy.

Halide ion	F^-	Cl^-	Br^-	I^-
Hydration energy (in kJ/mol)	515	381	347	305

Anomalous behaviour of fluorine

- (1) The anomalous behaviour of fluorine is due to its small size, highest electronegativity, low F-F bond dissociation enthalpy, and non availability of d orbitals in valence shell.
- (2) Most of the reactions of fluorine are exothermic (due to the small and strong bond formed by it with other elements).
- (3) It forms only one oxoacid while other halogens form a number of oxoacids.
- (4) Hydrogen fluoride is liquid (b.p. 293 K) due to strong hydrogen bonding. Other hydrogen halides are gases.

Reactivity towards oxygen :

Oxidation State	F	Cl	Br	I
-1	OF ₂ , O ₂ F ₂	-	-	-
+1		Cl ₂ O	Br ₂ O	
+4		Cl ₂ O	BrO ₂	I ₂ O ₄
+5		-	-	I ₂ O ₅
+6		Cl ₂ O ₆ , ClO ₃	-	
+7		Cl ₂ O ₇		I ₂ O ₇

- (1) Halogens form many oxides with oxygen but most of them are unstable.
- (2) Fluorine forms two oxides OF₂ and O₂F₂. However, only OF₂ is the thermally stable at 298 K.
- (3) These oxides are essentially oxygen fluorides because of the higher electronegativity of fluorine than oxygen. Both are strong fluorinating agents.
- (4) O₂F₂ oxidises plutonium to PuF₆ and the reaction is used in removing plutonium as PuF₆ from spent nuclear fuel.
- (5) Chlorine, bromine and iodine form oxides in which the oxidation states of these halogens vary from + 1 to + 7.
- (6) A combination of kinetic and thermodynamic factors lead to the generally decreasing order of stability of oxides formed by halogens, I > Cl > Br. The higher oxides of halogens tend to be more stable than the lower ones.
- (7) Chlorine oxides, Cl₂O, ClO₂, Cl₂O₆ and Cl₂O₇ are highly reactive oxidising agents and tend to explode. ClO₂ is used as a bleaching agent for paper pulp and textiles and in water treatment.
- (8) The bromine oxides, Br₂O, BrO₂, BrO₃ are the least stable halogen oxides and exist only at low temperature. They are very powerful oxidising agents.
- (9) The iodine oxides, I₂O₄, I₂O₅, I₂O₇ are insoluble solids and decompose on heating. I₂O₅ is very good oxidising agent and is used in the estimation of carbon monoxide.

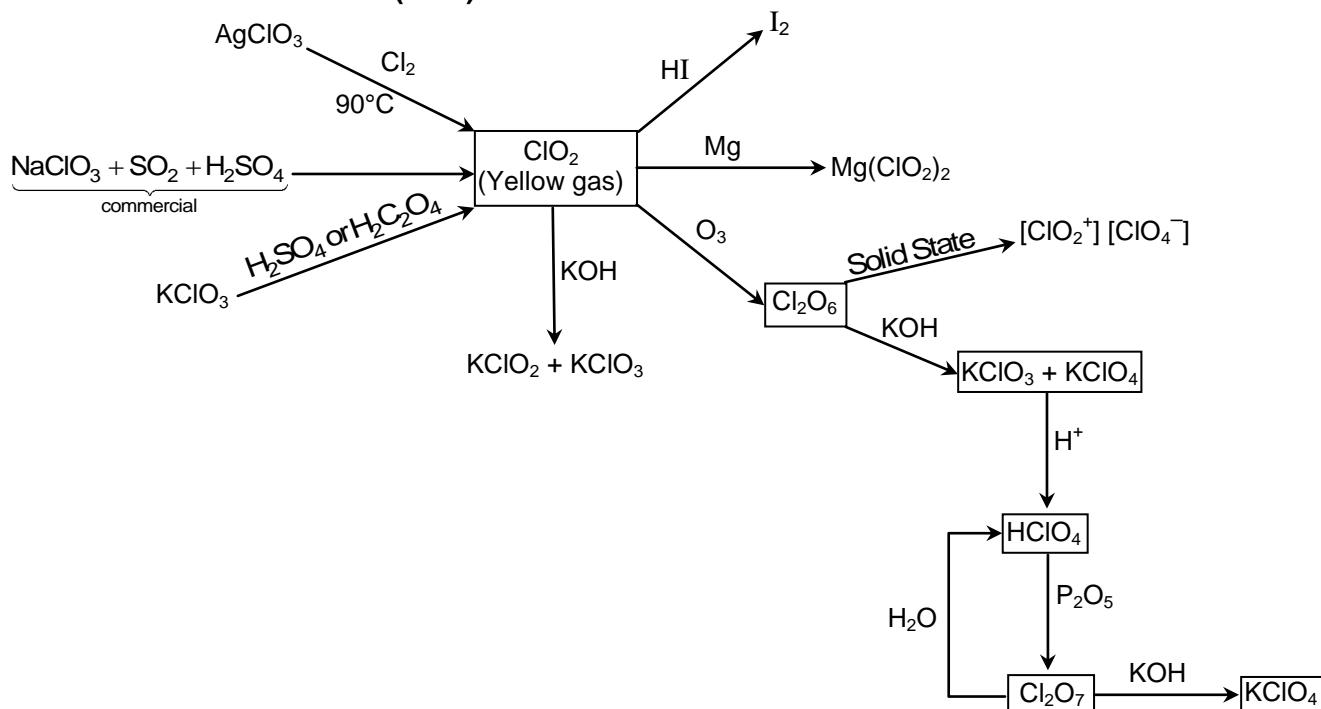
S.No.	Reaction with Elements	General Reaction	Comments
1.	H ₂	$X_2 + H_2 \rightarrow 2HX$ <div style="display: flex; align-items: center; justify-content: space-between;"> <div style="flex-grow: 1; text-align: center;"> $\rightarrow F_2 + H_2 \rightarrow 2HF$ $\rightarrow Cl_2 + H_2 \rightarrow 2HCl$ $\rightarrow Br_2 + H_2 \rightarrow 2HBr$ $\rightarrow I_2 + H_2 \rightarrow 2HI$ </div> <div style="margin-left: 20px;"> <ul style="list-style-type: none"> ♦ All the halogens ♦ Reactivity towards H₂ decrease down the group. ♦ F₂ → Violently react ♦ I₂ → Slow at room temp. </div> </div> <p>The acidic strength of these acids increases in the order : HF < HCl < HBr < HI. The stability of these halides decreases down the group due to decrease in bond (H-X) dissociation enthalpy in the order : H - F > H - Cl > H - Br > H - I</p>	
2.	Metal	$nX_2 + 2M \rightarrow 2MX_n$ <div style="display: flex; align-items: center; justify-content: space-between;"> <div style="flex-grow: 1; text-align: center;"> $\rightarrow 2Na + Cl_2 \rightarrow 2NaCl$ $\rightarrow 2Al + 3Cl_2 \rightarrow 2AlCl_3$ $\rightarrow 2Fe + 3Cl_2 \rightarrow 2FeCl_3$ $\rightarrow Mg_{(s)} + Br_{(l)} \rightarrow MgBr_{2(s)}$ $\rightarrow 2Ag + F_2 \rightarrow 2AgF$ </div> <div style="margin-left: 20px;"> <ul style="list-style-type: none"> ♦ Most metals form halides ♦ F the most vigorous <p>The ionic character of halides is MF > MCl > MBr > MI.</p> </div> </div>	
3.	P	$3X_2 + 2P \rightarrow PX_3$ (Limited) $5X_2 + 2P \rightarrow PX_5$ (Excess) <div style="display: flex; align-items: center; justify-content: space-between;"> <div style="flex-grow: 1; text-align: center;"> $\rightarrow P_4 + 6Cl_2 \rightarrow 4PCl_3$ $\rightarrow P_4 + 6Br_2 \rightarrow 4PBr_3$ $\rightarrow P_4 + 6I_2 \rightarrow 4PI_3$ </div> <div style="margin-left: 20px;"> <ul style="list-style-type: none"> ♦ All the halogens form trihalides As Sb Bi <p>Also form trihalides</p> </div> </div> <div style="display: flex; align-items: center; justify-content: space-between; margin-top: 20px;"> <div style="flex-grow: 1; text-align: center;"> $[2P + 5Cl_2 \rightarrow 2PCl_5]$ </div> <div style="margin-left: 20px;"> <ul style="list-style-type: none"> ♦ F, Cl & Br form pentahalides AsF₅, SbF₅, BiF₅, SbCl₅ </div> </div>	
4.	S	$X_2 + 2S \rightarrow S_2X_2$ (Limited) $2Cl_2 + S \rightarrow SCl_4$ (excess) $3F_2 + S \rightarrow SF_6$ <div style="display: flex; align-items: center; justify-content: space-between;"> <div style="flex-grow: 1; text-align: center;"> $[S_8 + 4Cl_2 \rightarrow 4S_2Cl_2]$ </div> <div style="margin-left: 20px;"> <ul style="list-style-type: none"> ♦ Cl and Br ♦ Cl only ♦ F only </div> </div>	

5.	O ₂	O ₂ + F ₂ $\xrightarrow[\text{silent electric discharge}]{\text{only in presence of}}$ O ₂ F ₂	
6.	Other non-metals	C + 2F ₂ \rightarrow CF ₄ 2B + 3F ₂ \rightarrow 2BF ₃	♦ Wood, charcoal, phosphorous, arsenic, antimony, boron, silicon react with F ₂ producing a flame.
7.	Other Halogens	X ₂ + X' ₂ \rightarrow 2XX' X ₂ + X'X \rightarrow XX' ₃	♦ Halogens combine amongst themselves to form a number of compounds known as interhalogen of the types XX', XX' ₃ , XX' ₅ and XX' ₇ where X is a larger size halogen and X' is smaller size halogen.

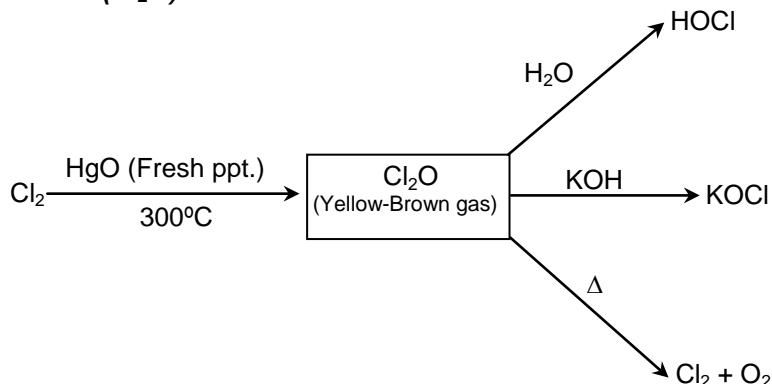
S.No.	Reaction with Compounds	General Reaction	Comments
1.	H ₂ O	2F ₂ + 2H ₂ O \rightarrow 4HF + O ₂ X ₂ (g) + H ₂ O(l) \rightarrow HX(aq.) + HOX(aq.) X = Cl or Br 4I ⁻ (aq.) + 4H ⁺ (aq.) + O ₂ \rightarrow 2I ₂ (s) + 2H ₂ O(l)	♦ Vigorous reaction with F. ♦ Cl > Br > I (F not at all) ♦ I reaction in reverse direction
2.	Base		
(i)	NH ₃	<u>For F₂</u> 2NH ₃ + 3F ₂ \rightarrow N ₂ + 6HF <u>For Cl₂ and Br₂</u> <u>NH₃ Excess</u> 3X ₂ + 8NH ₃ \rightarrow N ₂ + 6NH ₄ X [3Cl ₂ + 8NH ₃ \rightarrow N ₂ + 6NH ₄ Cl] <u>X₂ Excess</u> NH ₃ + 3X ₂ \rightarrow NX ₃ + 3HX [NH ₃ + 3Cl ₂ \rightarrow NCl ₃ + 3HCl]	♦ It is the distinction from other halogens. ♦ NX ₃ is explosive
		<u>For I₂</u> NH ₃ (g) + I ₂ \rightarrow No Reaction NH ₃ (aq) + I ₂ (s) $\xrightarrow[\text{(Ammonia liquor)}]{\text{A slurry is formed which can be dried and on hammering it explodes causing sound (crakers)}}$ NI ₃ . NH ₃ + 3HI 8NI ₃ .NH ₃ \rightarrow 5N ₂ + 9I ₂ + 6NH ₄ I	
(ii)	NaOH	<u>For F₂</u> 2F ₂ + 2NaOH \rightarrow OF ₂ (g) + 2NaF + H ₂ 2F ₂ + 4NaOH \rightarrow O ₂ (g) + 4NaF + 2H ₂ O (concentrated)	♦ Dilute alkali forms oxygen difluoride & with concentrated alkali liberates O ₂ .
		<u>For Cl₂, Br₂, I₂</u> 2NaOH + Cl ₂ \rightarrow NaCl + NaOCl + H ₂ O (Cold & dil.) 6NaOH + 3Cl ₂ \rightarrow 5NaCl + NaClO ₃ + 3H ₂ O (hot & conc.)	♦ These reactions are also given by Br ₂ and I ₂ .
(iii)	Ca(OH) ₂ (Dry slaked lime)	2Ca(OH) ₂ + 2Cl ₂ \rightarrow Ca(OCl) ₂ + CaCl ₂ + 2H ₂ O (Bleaching powder) = Ca(OCl) ₂ .CaCl ₂ .Ca(OH) ₂ .2H ₂ O	♦ Composition of bleaching powder
3.	Acid	Generally no reaction is shown with acids.	
4.	H ₂ S	<u>For F₂</u> H ₂ S + 4F ₂ \rightarrow SF ₆ + 2HF	

		For Cl_2 , Br_2 , I_2 $\text{X}_2 + \text{H}_2\text{S} \rightarrow 2\text{HX} + \text{S}$ $[\text{Cl}_2 + \text{H}_2\text{S} \rightarrow 2\text{HCl} + \text{S}]$	<ul style="list-style-type: none"> • Cl_2, Br_2 & I_2 oxidize S^{2-} to S • It shows Cl has great affinity for hydrogen to form HCl
5.	SO_2	$\text{X}_2 + \text{SO}_2 \rightarrow \text{SO}_2\text{X}_2$ $[\text{SO}_2 + \text{Cl}_2 \rightarrow \text{SO}_2\text{Cl}_2]$	<ul style="list-style-type: none"> • F & Cl
6.	CO	$\text{X}_2 + \text{CO} \rightarrow \text{COX}_2$ $[\text{CO} + \text{Cl}_2 \rightarrow \text{COCl}_2]$	<ul style="list-style-type: none"> • Cl and Br form carbonyl halides

Other Reactions			
For F_2			
1.	Reaction with SO_3	$2\text{SO}_3 + \text{F}_2 \xrightarrow[AgF]{180^\circ\text{C}} \text{FSO}_2 \text{OOSO}_2\text{F}$	
2.	Reaction with SiO_2	$\text{SiO}_2 (\text{s}) + 2\text{F}_2 (\text{g}) \rightarrow \text{SiF}_4 (\text{g}) + \text{O}_2 (\text{g})$	<ul style="list-style-type: none"> • It attacks glass at about 100°C. • The reaction is slow with dry F_2.
3.	Oxidising character	$\text{F}_2 + 2\text{NaX} \rightarrow 2\text{NaF} + \text{X}_2$; where (X= Cl, Br, I) (a) It can oxidise all other halide ions into halogen molecules (b) It can oxidise ClO_3^- into ClO_4^- and IO_3^- to IO_4^- $\text{F}_2 + \text{ClO}_3^- + \text{H}_2\text{O} \rightarrow 2\text{F}^- + \text{ClO}_4^- + 2\text{H}^+$ (c) It can oxidise HSO_4^- into $\text{S}_2\text{O}_8^{2-}$ $2\text{HSO}_4^- + \text{F}_2 \rightarrow 2\text{F}^- + \text{S}_2\text{O}_8^{2-} + 2\text{H}^+$	<ul style="list-style-type: none"> • It is the most powerful oxidising agent.
For Cl_2			
	Oxidising and bleaching properties	<p><i>Chlorine dissolves in water giving HCl and HOCl. Hypochlorous acid (HOCl) so formed, gives nascent oxygen which is responsible for oxidising and bleaching properties of chlorine.</i></p>	
		$2\text{FeSO}_4 + \text{H}_2\text{SO}_4 + \text{Cl}_2 \rightarrow \text{Fe}_2(\text{SO}_4)_3 + 2\text{HCl}$ $\text{Na}_2\text{SO}_3 + \text{Cl}_2 + \text{H}_2\text{O} \rightarrow \text{Na}_2\text{SO}_4 + 2\text{HCl}$ $\text{SO}_2 + 2\text{H}_2\text{O} + \text{Cl}_2 \rightarrow \text{H}_2\text{SO}_4 + 2\text{HCl}$ $\text{I}_2 + 6\text{H}_2\text{O} + 5\text{Cl}_2 \rightarrow 2\text{HIO}_3 + 10\text{HCl}$ $\text{X}^- + \text{Cl}_2 \rightarrow \text{X}_2 + 2\text{Cl}^-$	<ul style="list-style-type: none"> • Oxidises ferrous to ferric, sulphite to sulphate, sulphur dioxide to sulphuric acid and iodine to iodic acid. • Chlorine oxidises both Br^- and I^- to Br_2 and I_2 respectively.
	Bleaching action	$\text{Cl}_2 + \text{H}_2\text{O} \rightarrow 2\text{HCl} + \text{O}$ <u>Bleaching action of SO_2</u> $\text{SO}_2 + 2\text{H}_2\text{O} \rightarrow \text{H}_2\text{SO}_4 + 2\text{H}$ $\text{SO}_3^{2-} + \text{Coloured material} \xrightarrow{\text{Reduced}} \text{SO}_4^{2-} + \text{Colourless material}$	<ul style="list-style-type: none"> • It is a powerful bleaching agent • bleaching action is due to oxidation. • Coloured substance + O \rightarrow Colourless substance • It bleaches vegetable or organic matter in the presence of moisture. • Bleaching effect of chlorine is permanent. • The bleaching action of SO_2 is temporary because it takes place through reduction. • $\text{Reduced Colourless material} \xrightarrow{\text{O}_2 \text{ of air}} \text{Coloured material}$
For Br_2			
		($\text{Br}_2 \cdot 8\text{H}_2\text{O}$) \leftarrow Clathrate compound	<ul style="list-style-type: none"> • Reddish brown liquid, fairly soluble in water. It also forms hydrate like Cl_2



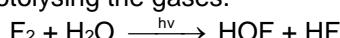
For I ₂			
1.	Reaction with Hypo	$\text{S}_2\text{O}_3^{2-}$ (thiosulphate ions) + I ₂ \rightarrow $\text{S}_4\text{O}_6^{2-}$ (tetrathionate ions) + 2I ⁻	♦ This reaction is the basis of iodometric titration, which is carried out for the estimation of iodine using starch indicator.
2.	Reaction with KClO ₃ or KBrO ₃	$2\text{KClO}_3 + \text{I}_2 \xrightarrow{\Delta} 2\text{KIO}_3 + \text{Cl}_2$; $2\text{KBrO}_3 + \text{I}_2 \xrightarrow{\Delta} 2\text{KIO}_3 + \text{Br}_2$	


Section (E₁) : Oxides, Hydroxides & Oxyacids

OXIDES OF CHLORINE

CHLORINE DIOXIDE (ClO₂) :

Dichlorine Monoxide (Cl₂O) :



OXY-ACIDS OF HALOGENS

HOX SERIES :

HYPO-FLOROUS ACID [HOF] :

HOF has been prepared by trapping F₂ and H₂O in unreactive matrix of solid N₂ at very low temperature and photolysing the gases.

Recent method is by passing, F_2 over ice at $0^\circ C$ and removing the product into a cold trap.

○ HOCl, HOBr and HOI are not very stable and are known only in aqueous solution.

Hypo-chlorous Acid [HClO] :

PREPARATION :

- (i) The acid is known only in solution, It is obtained by shaking precipitate of HgO with chlorine water.

$$2HgO + 2Cl_2 + H_2O \longrightarrow Hg_2OCl_2$$
 (Oxychloride of mercury) + $2HClO$
- (ii) Commercially, it is obtained by passing CO_2 through suspension of bleaching powder and then distilling.

$$2CaOCl_2 + H_2O + CO_2 \longrightarrow CaCl_2 + CaCO_3 + 2HClO$$

 Maximum concentration obtained is 25% as in the process of distillation, the acid decomposes into its anhydrides, Cl_2O .

$$2HClO \longrightarrow H_2O + Cl_2O$$

PROPERTIES :

- (i) It is a weak acid. Its concentrated solution is yellow in colour while dilute solution is colourless. It is unstable and decomposes.

$$2HClO \longrightarrow 2HCl + O_2$$
- (ii) It dissolves magnesium with evolution of hydrogen.

$$Mg + 2HClO \longrightarrow Mg(ClO)_2 + H_2$$
- (iii) With alkalies, it forms salts called hypochlorites.
- (iv) It acts as a powerful oxidising and bleaching agent. This is due to release of nascent oxygen easily.

$$HClO \longrightarrow HCl + O$$

HXO_2 SERIES :

CHLOROUS ACID [HClO₂] :

PREPARATION :

It is obtained in aqueous solution when barium chlorite suspension in water is treated with H_2SO_4 . The insoluble barium sulphate is filtered off.

PROPERTIES:

- (i) The freshly prepared solution is colourless but it soon decomposes to ClO_2 which makes the solution yellow.

$$5HClO_2 \longrightarrow 4ClO_2 + HCl + 2H_2O$$
- (ii) Salts of $HClO_2$ are called chlorite and prepared by one of the following methods.

$$2ClO_2 + 2NaOH \longrightarrow NaClO_2 + NaClO_3 + H_2O$$

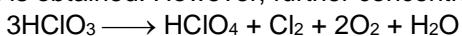
$$2ClO_2 + Na_2O_2 \longrightarrow 2NaClO_2 + O_2$$

 Chlorites are used as bleaching agents. They are stable in alkaline solution even when boiled, but in acid solution they disproportionate, particularly when heated.

$$5HClO_2 \longrightarrow 4ClO_2 + HCl + 2H_2O$$
 and $4HClO_2 \longrightarrow 2ClO_2 + HClO_3 + HCl + H_2O$
- (iii) The acid liberates iodine from KI.

$$4KI + HClO_2 + 2H_2O \longrightarrow 4KOH + HCl + 2I_2$$

HXO_3 SERIES


CHLORIC ACID [HClO₃] :

PREPARATION :

This acid is only known in solution. The acid is prepared by the action of the dilute H_2SO_4 on barium chlorate.

After reaction, $BaSO_4$ is removed by filtration, and the filtrate is evaporated in vacuum till 40 percent solution is obtained. However, further concentration by evaporation leads to decomposition.

$HBrO_3$ can be prepared by similar method using $Ba(BrO_3)_2$.

PROPERTIES :

(i) Concentrated acid is colourless and pungent smelling liquid. It decomposes in light. However, it is stable in dark.

(ii) It acts as a strong oxidising and bleaching agent in light.

(iii) Organic substances like paper, cotton, wool, etc., catch fire in contact with the acid.

(iv) HClO_3 oxidises SO_2 to SO_3 : $\text{HClO}_3 + 3\text{SO}_2 \rightarrow \text{HCl} + 3\text{SO}_3$

(v) HClO_3 when evaporates to dryness decomposes giving ClO_2 .

$$4\text{HClO}_3 \rightarrow 4\text{ClO}_2(\text{g}) + 2\text{H}_2\text{O}(\text{g}) + \text{O}_2(\text{g})$$

(vi) HBrO_3 is not very stable, but is known in solution, and as salts.

(vii) HIO_3 is formed by oxidation of I_2 with concentrated HNO_3 or O_3 .

$$8\text{H}^+ + 10\text{NO}_3^- + \text{I}_2 \rightarrow 2\text{IO}_3^- + 10\text{NO}_2 + 4\text{H}_2\text{O}$$

(viii) IO_3^- oxidises I^- to I_2 : $\text{IO}_3^- + 5\text{I}^- + 6\text{H}^+ \rightarrow 3\text{I}_2 + 3\text{H}_2\text{O}$

(ix) Iodic acid is reasonably stable and exists as a white solid.

(x) $2\text{KClO}_3 \xrightarrow[\text{MnO}_2]{150^\circ\text{C}} 2\text{KCl} + 3\text{O}_2$

(xi) $4\text{KClO}_3 \xrightarrow{\text{low temperature}} 3\text{KClO}_4 + \text{KCl}$ (in absence of catalyst)

(xii) $2\text{Zn}(\text{ClO}_3)_2 \xrightarrow{\Delta} 2\text{ZnO} + 2\text{Cl}_2 + 5\text{O}_2$

(xiii) Chlorates are used in fire work.

 HXO_4 SERIES**PERCHLORIC ACID [HClO_4] :****PREPARATION:**

(i) It is the most stable oxy-acid of chlorine. Anhydrous HClO_4 is obtained by doing distillation of KClO_4 (potassium perchlorate), with 96-97.5% H_2SO_4 under low pressure at 90-160°C.
 $\text{KClO}_4 + \text{H}_2\text{SO}_4 \rightarrow \text{KHSO}_4 + \text{HClO}_4$

(ii) An aqueous solution of the acid is obtained by reacting barium perchlorate with calculated quantity of dilute H_2SO_4 . The insoluble barium sulphate is removed by filtration.
 $\text{Ba}(\text{ClO}_4)_2 + \text{H}_2\text{SO}_4 \rightarrow \text{BaSO}_4 + 2\text{HClO}_4$

(iii) $\text{NaClO}_3 + \text{H}_2\text{O} \xrightarrow{\text{Electrolysis}} \text{ClO}_4^- + 2\text{H}^+ + 2\text{e}^-$

(iv) $\text{NH}_4\text{ClO}_4 + \text{HNO}_3 \rightarrow \text{HClO}_4 + \text{NH}_4\text{NO}_3$

(v) $4\text{ClO}_3^- \xrightarrow{\Delta} 3\text{ClO}_4^- + \text{Cl}^-$

(vi) $\text{HClO}_4 \cdot 2\text{H}_2\text{O} + 2\text{H}_2\text{S}_2\text{O}_7 \rightarrow \text{HClO}_4$ (obtained as anhydrous HClO_4) + $2\text{H}_2\text{SO}_4$

PROPERTIES:

(i) Anhydrous HClO_4 is a colourless liquid which turns dark on keeping. It fumes in moist air.

(ii) It is one of the strongest acid and ionises as follows :
 $\text{HClO}_4 \rightarrow \text{H}^+ + \text{ClO}_4^-$

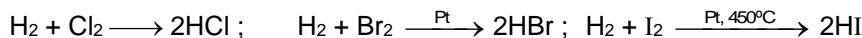
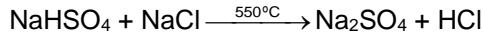
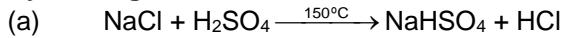
(iii) It dissolves most of the metals.
 $\text{Zn} + 2\text{HClO}_4 \rightarrow \text{Zn}(\text{ClO}_4)_2 + \text{H}_2$

(iv) Hot concentrated acid (73%) behaves as a remarkable oxidising agent :
 $4\text{HClO}_4 \rightarrow 2\text{Cl}_2 + 7\text{O}_2 + 2\text{H}_2\text{O}$

(v) $2\text{HClO}_4 + \text{P}_2\text{O}_5 \rightarrow 2\text{HPO}_3 + \text{Cl}_2\text{O}_7$

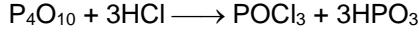
O $\text{Mg}(\text{ClO}_4)_2$ is used in dry batteries and is also an effective desiccant called **anhydron**. KClO_4 is used in fire works and flares.

Some important orders :




(a) Acidic strength :
(i) $\text{HI} > \text{HBr} > \text{HCl} > \text{HF}$ (ii) $\text{HOCl} > \text{HOBr} > \text{HOI}$ (iii) $\text{HClO}_4 > \text{HClO}_3 > \text{HClO}_2 > \text{HClO}$

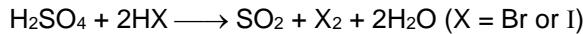
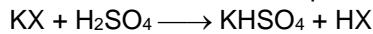
(b) Oxidising powder
(i) $\text{F}_2 > \text{Cl}_2 > \text{Br}_2 > \text{I}_2$
(ii) $\text{BrO}_4^- > \text{IO}_4^- > \text{ClO}_4^-$ (According to electrode potential)

(c) Order of disproportionations
 $3\text{XO}^- \rightarrow 2\text{X}^- + \text{XO}_3^-$ (hypohalite ion) ; $\text{IO}^- > \text{BrO}^- > \text{ClO}^-$

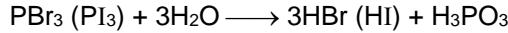
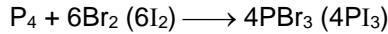
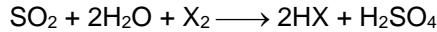
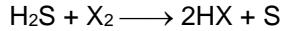

Section (F₁) :**HALOGEN ACIDS (HCl, HBr & HI)**

- Pure anhydrous HX compounds refer as hydrogen halides.
- Their aqueous solutions as hydrohalic acids.

Preparation :**(1) By direct combination of elements :****(2) By heating a halide with concentrated acid :**



This method is called as salt cake method as it involves the formation of $NaHSO_4$ (salt cake).

HCl cannot be dried over P_2O_5 (P_4O_{10}) or quick lime since they react with gas chemically.

HCl is, hence dried by passing through concentrated H_2SO_4 .

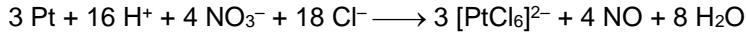
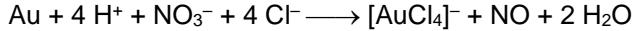
(b) HBr (or HI) cannot be prepared by heating bromide (iodide) with concentrated H_2SO_4 because HBr and HI are strong reducing agents and reduce H_2SO_4 to SO_2 and get themselves oxidised to bromine and iodine respectively.

Hence, HBr and HI are prepared by heating bromides and iodides respectively with concentrated H_3PO_4 .

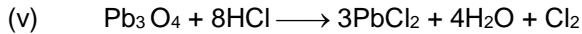
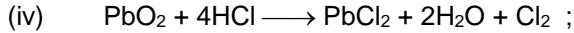
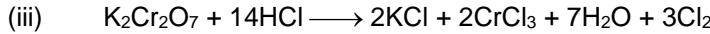
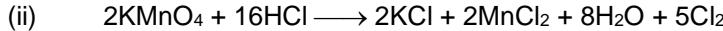
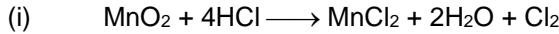
(3) By reaction of P_4 (Laboratory Method) :**(4) By passing H_2S / SO_2 into solutions of halogens :****(5) PROPERTIES :**

(i) These are colourless, pungent smelling gases with acidic tastes.

(ii) These are neither combustible nor supporter of combustion.



(iii) When perfectly dry, they have no action on litmus, but in presence of moisture, they turn blue litmus red, showing acidic nature. Among HX, HI is the strongest and HF is the weakest acid.

(iv) These are quite soluble in water.






HCl ionises as below : $HCl(g) + H_2O(\ell) \longrightarrow H_3O^+(aq) + Cl^-(aq) ; K_a = 10^7$

Its aqueous solution is called hydrochloric acid. High value of dissociation constant (K_a) indicates that it is a strong acid in water.

(v) When three parts of concentrated HCl and one part of concentrated HNO_3 are mixed, aqua regia is formed which is used for dissolving noble metals, e.g., gold, platinum.

(6) Reducing property and stability of hydrides :

HCl : It is quite stable and hence is oxidised by strong oxidising agents like MnO_2 , $KMnO_4$, $K_2Cr_2O_7$, PbO_2 , Pb_3O_4 .

Therefore, HCl is a weak reducing agent.

HBr : It is not very stable and hence more easily oxidised or acts as a strong reducing agents.

(i) In addition to above reducing properties of HCl, it also reduces H_2SO_4 to SO_2 which is not done by HCl.

(ii) Aqueous HBr on exposure to atmospheric oxygen is oxidised to bromine (yellow)

HI : It is least stable hydrogen halide. It is readily oxidised and thus acts as a powerful reducing agent.

In addition to reaction shown by HCl, it shows following reactions also.

(i) $H_2SO_4 + 2HI \longrightarrow SO_2 + I_2 + H_2O$

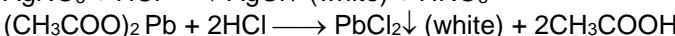
(ii) $2HNO_3 + 2HI \longrightarrow 2NO_2 + I_2 + 2H_2O$

(iii) $2HNO_2 + 2HI \longrightarrow 2NO + I_2 + 2H_2O$

(iv) $HIO_3 + 5HI \longrightarrow 3I_2 + 2H_2O$

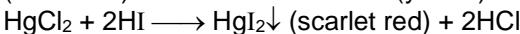
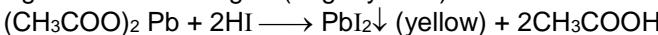
(v) $K_2S_2O_8 + 2HI \longrightarrow K_2SO_4 + I_2 + H_2SO_4$

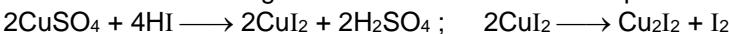
(vi) $2FeCl_3 + 2HI \longrightarrow 2FeCl_2 + I_2 + 2HCl$


(vii) Aqueous solution of acid, if exposed to O_2 is oxidised to iodine.

(7)

Detection of cation:

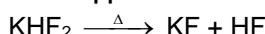


HCl : $AgNO_3 + HCl \longrightarrow AgCl \downarrow$ (white) + HNO_3


HBr : $AgNO_3 + HBr \longrightarrow AgBr \downarrow$ (pale yellow) + HNO_3

HI : $AgNO_3 + HI \longrightarrow AgI \downarrow$ (bright yellow) + HNO_3

HI reacts with $CuSO_4$ liberating iodine via the formation of cupric iodide (not by HCl or HBr).

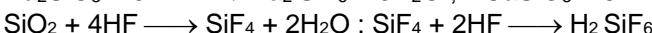
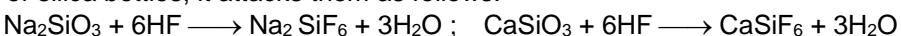
USES :


- (i) HCl is used in preparation of Cl_2 , chlorides, aqua regia, glucose (from corn starch), medicines, laboratory as reagents, cleaning metal surfaces before soldering or electroplating. It is also used for extracting glue from bones and purifying bone black.
- (ii) HBr is used as laboratory reagent for preparing bromo derivatives like sodium bromides and potassium bromide.
- (iii) HI is used as reducing agent in organic chemistry.

HYDROFLUORIC ACID [H_2F_2 , HF] :

PREPARATION :

H_2 and F_2 combine with each other very violently (even in dark) to form HF. So simple reaction cannot be used for its preparation, special methods are employed for its preparation.



- (1) **Laboratory Method** : Anhydrous HF is obtained by heating dry potassium hydrogen fluoride in a copper retort connected with copper condenser.

- (2) **Industrial Method** : HF is prepared by heating fluorspar (CaF_2) with concentrated H_2SO_4 .

- (3) Aqueous HF being corrosive to glass, is stored in wax lined bottles or vessel made of copper or monel. In glass or silica bottles, it attacks them as follows:

This action of HF on silica (silicates) is used for etching glass. The glass surface to be etched is coated with wax, the design, is scratched on glass through wax coating and this is then treated with 40% solution.

PROPERTIES :

- (i) It is colourless, corrosive liquid with pungent smell with high boiling point due to hydrogen bonding.
- (ii) Dry HF does not attack metals under ordinary conditions (except K), but in presence of water it dissolves metals with liberation of hydrogen gas.
- (iii) It is a weak dibasic acid (due to strong HF bond) and forms two series of salt.

$$\text{NaOH} + \text{H}_2\text{F}_2 \longrightarrow \text{NaHF}_2 + \text{H}_2\text{O}$$

$$\text{NaHF}_2 + \text{NaOH} \longrightarrow 2\text{NaF} + \text{H}_2\text{O}$$
- (iv) HF also reacts with CCl_4 to form freons.

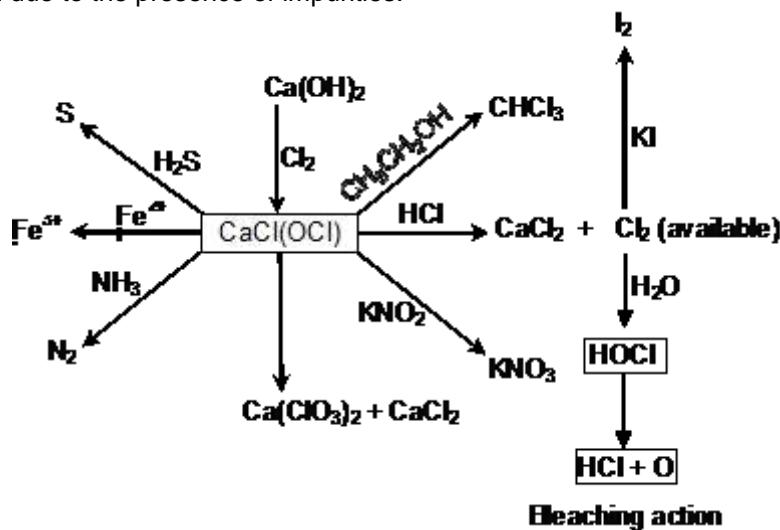
$$\text{CCl}_4 + \text{HF} \longrightarrow \text{CFCI}_3 + \text{HCl}$$

$$\text{CFCI}_3 + \text{HF} \longrightarrow \text{CF}_2\text{Cl}_2 + \text{HCl}$$

Section (H) : Other compounds (Inter halogens, Bleaching powder, Pseudo halides & Poly halides)

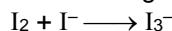
BLEACHING POWDER :

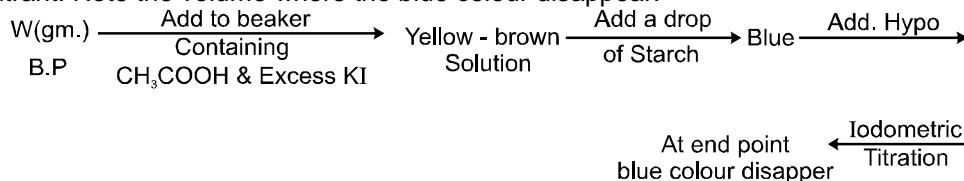
Bleaching powder is also called calcium chlorohypochlorite because it is considered as a mixed salt of hydrochloric acid and hypochlorous acid.


The composition of bleaching powder is $\text{Ca}(\text{OCl})_2 \cdot \text{CaCl}_2 \cdot \text{Ca}(\text{OH})_2 \cdot 2\text{H}_2\text{O}$.

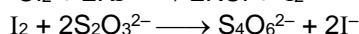
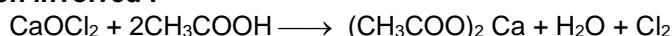
PREPARATION:

Properties


It is a pale yellow powder. It has a strong smell of chlorine. It is soluble in water but a clear solution is never formed due to the presence of impurities.


ESTIMATION OF AVAILABLE CHLORINE :

Let the weight of sample of bleaching powder be W g.

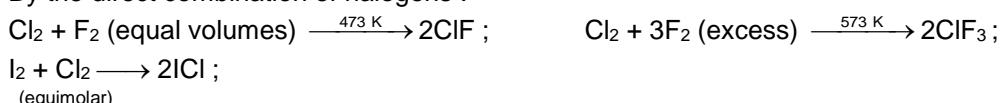


Add into a beaker containing acetic acid solution and excess KI. A yellow brown solution is formed (I_3^-)

Now few drops of starch solution is added into it. An intensive blue color is observed. Now hypo is used as the titrant. Note the volume where the blue colour disappears.

Reaction involved :

$$\text{Calculation : } \% \text{Cl} = \frac{[\text{M}_{\text{hypo}} \times V_{\text{hypo}}] \times \frac{1}{2} \times 71}{W} \times 100$$

INTERHALOGEN COMPOUNDS :

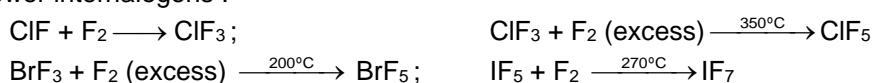

We know that halogen atoms have different electronegativity. Due to this difference in electronegativity the halogen atoms combine with each other and give rise to the formation of binary covalent compounds, which are called interhalogen compounds. These are of four types XX' , XX'_3 , XX'_5 and XX'_7 where X is a larger size halogen and X' is smaller size halogen.

Some Properties of Interhalogen Compounds

Type	Formula	Physical state and colour	Structure
XX'_1	ClF	Colourless gas	—
	BrF	pale brown gas	—
	IF ^a	detected spectroscopically	—
	BrCl ^b	gas	—
	ICl	ruby red solid (α -form)	—
	IBr	brown red solid (β -form)	—
XX'_3	ClF ₃	black solid	—
	BrF ₃	colourless gas	Bent T-shaped
	IF ₃	yellow green liquid	Bent T-shaped
	ICl ₃	yellow powder	Bent T-shaped
XX'_5	IF ₅	orange solid	Bent T-shaped
	BrF ₅	colourless gas but solid below 77 K	Square pyramidal
	ClF ₅	colourless liquid	Square pyramidal
XX'_7	IF ₇	colourless liquid	Square pyramidal
		colourless gas	Pentagonal bipyramidal

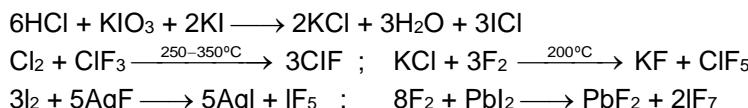
PREPARATION :

(i) By the direct combination of halogens :


(ii) Diluted with water : $\text{Br}_2 \text{ (g)} + 3\text{F}_2 \longrightarrow 2\text{BrF}_3$

(iii) F_2 is diluted with N_2 : $\text{I}_2 + 3\text{F}_2 \xrightarrow{-78^\circ\text{C}} 2\text{IF}_3$

(iv) F_2 is taken in freon : $\text{Br}_2 + 5\text{F}_2 \text{ (excess)} \longrightarrow 2\text{BrF}_5$


(v) IF_7 can not be prepared by direct combination of I_2 & F_2 .

(vi) From lower interhalogens :

This method is generally applied for the preparation of halogen fluorides.

(vii) Other methods :

PROPERTIES :

(i) These compounds may be gases, liquids or solids.

Gases : ClF, BrF, ClF₃, IF₇ ; Liquids : BrF₃, BrF₅ ; Solids : ICl, IBr, IF₃, ICl₃.

(ii) Interhalogens containing fluorine are colourless but inter halogens consisting of heavier halogens are coloured. The intensity of colour increases with increase in the molecular weight of the compounds.

(iii) All interhalogens are covalent molecules and are diamagnetic in nature since all the valence electrons present as bonding or non-bonding electrons are paired.

(iv) The boiling points increases with the increase in the electronegativity difference between A and B atoms.

(v) Thermal stability of AB type interhalogen compounds decreases with the decrease in electronegativity difference between A and B atoms. $\text{IF} > \text{BrF} > \text{ClF} > \text{ICl} > \text{IBr} > \text{BrCl}$. More polar is the A–B bond more is the stability of interhalogen.

(vi) Interhalogen compounds are more reactive than the parent halogens but less reactive than F_2 .

$$\text{ICl} + 2\text{Na} \longrightarrow \text{NaI} + \text{NaCl}$$

 The order of reactivity of some interhalogens is as follows :

$$\text{ClF}_3 > \text{BrF}_3 > \text{IF}_7 > \text{BrF}_5 > \text{BrF}$$
.

(vii) **Hydrolysis** : All these undergo hydrolysis giving halide ion derived from the smaller halogen and a hypohalite (when AB), halite (when AB_3), halate (when AB_5), and perhalate (when AB_7) anion derived from the larger halogen.

$$\text{AB} + \text{H}_2\text{O} \longrightarrow \text{HB} + \text{HOA}$$

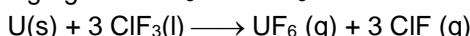
$$\text{BrCl} + \text{H}_2\text{O} \longrightarrow \text{HCl} + \text{HOBr} ; \quad \text{ICl} + \text{H}_2\text{O} \longrightarrow \text{HCl} + \text{HIO}$$

$$\text{ICl}_3 + 2\text{H}_2\text{O} \longrightarrow 3\text{HCl} + \text{HIO}_2 ; \quad \text{IF}_5 + 3\text{H}_2\text{O} \longrightarrow 5\text{HF} + \text{HIO}_3$$

$$\text{IF}_7 + 6\text{H}_2\text{O} \longrightarrow 7\text{HF} + \text{H}_5\text{IO}_6 ; \quad \text{BrF}_5 + 3\text{H}_2\text{O} \longrightarrow 5\text{HF} + \text{HBrO}_3$$

Oxidation state of A atom does not change during hydrolysis.

(viii) Reaction with non-metallic and metallic oxides :


$$4\text{BrF}_3 + 3\text{SiO}_2 \longrightarrow 3\text{SiF}_4 + 2\text{Br}_2 + 3\text{O}_2 ; \quad 4\text{BrF}_3 + 2\text{WO}_3 \longrightarrow 2\text{WF}_6 + 2\text{Br}_2 + 3\text{O}_2$$

(x) Reaction with alkali metal halides :

$$\text{IBr} + \text{NaBr} \longrightarrow \text{NaIBr}_2 ; \quad \text{ICl}_3 + \text{KCl} \longrightarrow \text{KICl}_4$$

USES :

These compounds can be used as non aqueous solvents. Interhalogen compounds are very useful fluorinating agents. ClF_3 and BrF_3 are used for the production of UF_6 in the enrichment of ^{235}U .

Pseudohalogens and Pseudohalides :

(i) A few ions are known, consisting of two or more atoms of which at least one is N, that have properties similar to those of the halide ions. They are therefore called pseudohalide ions.

(ii) Pseudohalide ions are univalent, and these form salts resembling the halide salts. For example, the sodium salts are soluble in water, but the silver salts are insoluble.

(iii) The hydrogen compounds are acids like the halogen acid HX . Some of the pseudohalide ions combine to form dimers comparable with the halogen molecule X_2 . These include cyanogens $(\text{CN})_2$, thiocyanogen $(\text{SCN})_2$ and selenocyanogen $(\text{SeCN})_2$.

Anion	Acid		Dimer		
CN^-	Cyanide ion	HCN	Hydrogen cyanide	$(\text{CN})_2$	Cyanogen
SCN^-	Thiocyanate ion	HSCN	Thiocyanic acid	$(\text{SCN})_2$	Thiocyanogen
SeCN^-	Selenocyanate ion	HOCHN	Cyanic acid	$(\text{SeCN})_2$	Selenocyanogen
OCN^-	Cyanate ion	H_2NCN	Cyanamide		
NCN^{2-}	Cyanamide ion	HN_3	Hydrogen azide		
N_3^-	Azide ion				

The best known pseudohalide is CN^- . This resembles Cl^- , Br^- and I^- in the following respects.

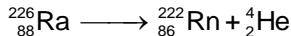
(a) It forms an acid HCN.

(b) It can be oxidized to form a molecule cyanogen $(\text{CN})_2$.

(c) It forms insoluble salts with Ag^+ , Pb^{2+} and Hg^{2+} .

(d) Interpseudohalogen compounds ClCN , BrCN and ICN can be formed.

(e) AgCN is insoluble in water but soluble in ammonia, as is AgCl .


(f) It forms a large number of complexes similar to halide complexes.
 e.g. $[\text{Cu}(\text{CN})_4]^{2-}$ and $[\text{CuCl}_4]^{2-}$ and $[\text{Co}(\text{CN})_6]^{3-}$ and $[\text{CoCl}_6]^{3-}$

GROUP 18 ELEMENTS : (THE NOBLE GASES / ZERO GROUP FAMILY)

Group 18 consists of six elements: helium, neon, argon, krypton, xenon and radon. All these are gases and chemically unreactive. They form very few compounds. Because of this they are termed as noble gases.

Section (A_{II}) : Elements: Occurrence & Isolation

- (i) All the noble gases except radon occur in the atmosphere.
- (ii) Their atmospheric abundance in dry air is ~ 1% by volume of which argon is the major constituent. Helium and sometimes neon are found in minerals of radioactive origin e.g., pitchblende, monazite, cleveite.
- (iii) The main commercial source of helium is natural gas.
- (iv) Xenon and radon are the rarest elements of the group. Radon is obtained as a decay product of ²²⁶Ra.

- (v) Most abundant element in air is Ar. Order of abundance in the air is Ar > Ne > Kr > He > Xe.

Section (B_{II} + C_{II} + D_{II}) : Periodic Trends, Properties of Elements and Chemical Bonding**(1) Electronic Configuration :**

All noble gases have general electronic configuration ns^2np^6 except helium which has $1s^2$. Many of the properties of noble gases including their inactive nature are ascribed to their closed shell structures.

(2) Ionisation Enthalpy :

Due to stable electronic configuration these gases exhibit very high ionisation enthalpy. However, it decreases down the group with increases in atomic size.

(3) Atomic Radii :

Atomic radii increase down the group with increase in atomic number.

(4) Electron Gain Enthalpy :

Since noble gases have stable electronic configurations, they have no tendency to accept the electron and therefore, have larger positive values of electron gain enthalpy.

(5) Physical properties :

- (i) All the noble gases are mono-atomic.
- (ii) They are colourless, and tasteless.
- (iii) They are sparingly soluble in water.
- (iv) They have very low melting and boiling points because the only type of interatomic interaction in these elements is weak dispersion forces.
- (v) Helium has the lowest boiling point (4.2K) of any known substance. It has a unusual property of diffusing through most commonly used laboratory materials such as rubber, glass or plastics.

Table : Atomic and physical properties

Element	He	Ne	Ar	Kr	Xe
Atomic Number	2	10	18	36	54
Atomic Mass	4	20.18	39.10	83.80	131.30
Electronic configuration	$1s^2$	$[He] 2s^2 2p^6$	$[Ne] 3s^2 3p^6$	$[Ar] 3d^{10}4s^2 4p^6$	$[Kr] 4d^{10}5s^2 5p^6$
Atomic Radius (pm)	120	160	190	200	220
Ionization enthalpy / (kJ mol ⁻¹)	2372	2080	1520	1351	1170
Density (at STP)/g cm ⁻³	1.8×10^{-4}	9.0×10^{-4}	1.8×10^{-3}	3.7×10^{-3}	5.9×10^{-3}
Melting point / K	–	24.6	83.8	115.9	161.3
Boiling point / K	4.2	27.1	87.2	119.7	165.0

(6) Chemical Properties :

In general, noble gases are least reactive. Their inertness to chemical reactivity is attributed to the following reasons:

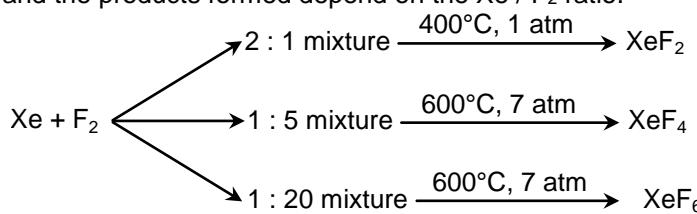
- (i) The noble gases except helium ($1s^2$) have completely filled $ns^2 np^6$ electronic configuration in their valence shell.
- (ii) They have high ionisation enthalpy and more positive electron gain enthalpy.
- (iii) In March 1962, Neil Bartlett, prepared a red compound which is formulated as $O_2^+ PtF_6^-$. He, then realised that the first ionisation enthalpy of molecular oxygen (1175 kJ mol^{-1}) was almost identical with that xenon (1170 kJ mol^{-1}).

- (iv) He also prepared same type of compound with Xe^+ PtF_6^- by mixing Pt F_6 and Xenon. After this discovery, a number of xenon compounds mainly with most electronegative elements like fluorine and oxygen, have been synthesised.
- (v) The compounds of krypton are fewer. Only the difluoride (KrF_2) has been studied in detail.
- (vi) Compounds of radon have not been isolated but only identified (e.g., RnF_2) by radiotracer technique.
- (vii) No true compounds of Ar, Ne or He are yet known.
- (viii) If Helium is compressed and liquified it forms He(I) liquid at 4.2 K. This liquid is a normal liquid like any other liquid. But if it is further cooled then He(II) is obtained at 2.2 K, which is known as super fluid, because it is a liquid with properties of gases. It climbs through the walls of the container & comes out. It has very high thermal conductivity & very low viscosity.

(7) Clathrate compounds :

- (i) Inert gas molecules get trapped in the cages formed by the crystal structure of water.
- (ii) During the formation of ice Xe atoms will be trapped in the cavities (or cages) formed by the water molecules in the crystal structure of ice. Compounds thus obtained are called clathrate compounds.
- (iii) In these compounds there are no chemical bonds. They do not possess an exact chemical formula but approx it is 6 water molecules : 1 inert gas molecule.
- (iv) The cavity size is just smaller than the atom of the noble gas. Such compounds are also formed by the other organic liquids like dihydroxybenzene (for example quinol).
- (v) The smaller noble gases He and Ne do not form clathrate compounds because the gas atoms are small enough to escape from the cavities.
- (vi) Clathrate provides a convenient means of storing radioactive isotopes of Kr and Xe produced in nuclear reactors.

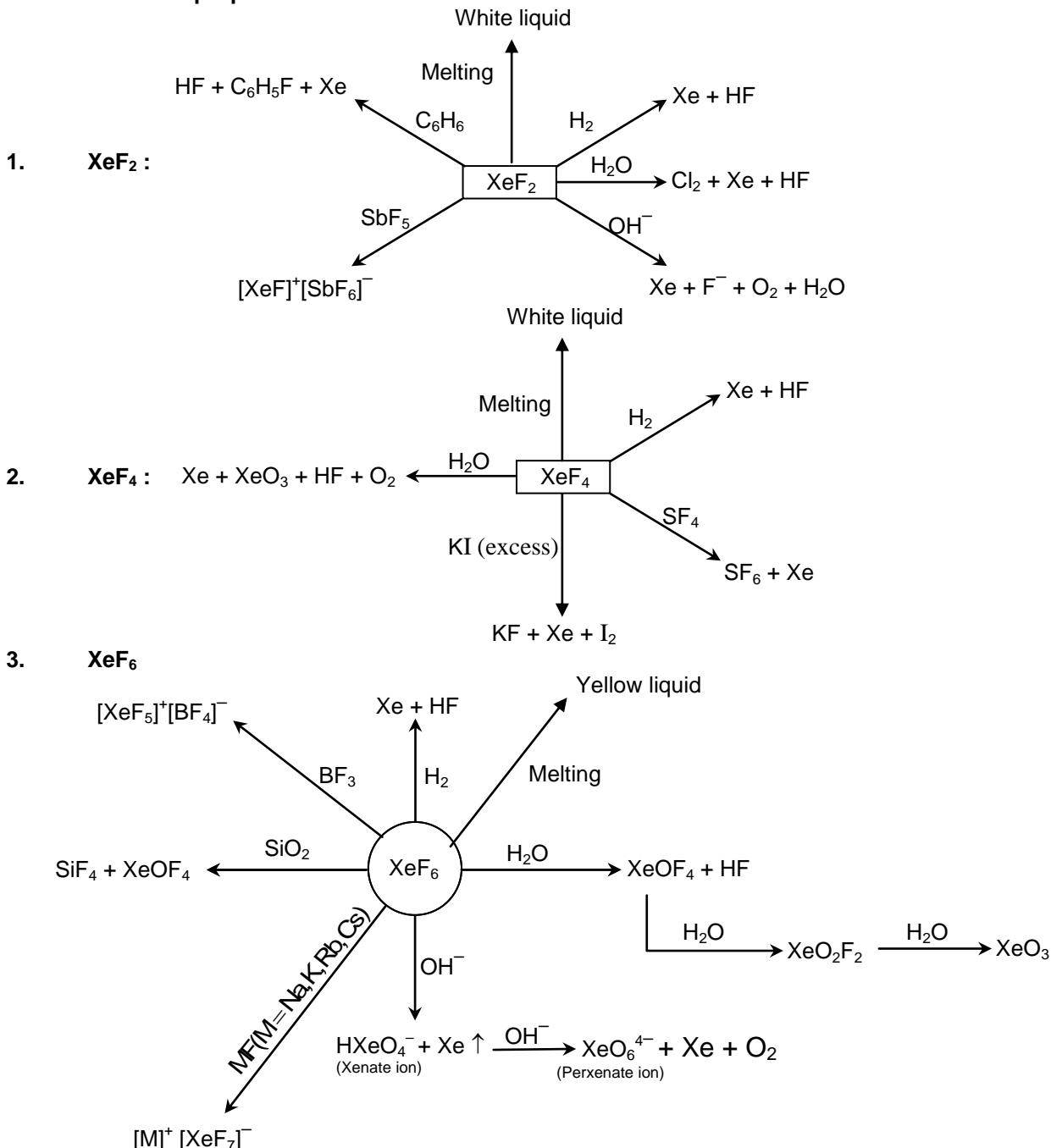
Section (G_{II}) : Compounds of Xenon


Halides & Oxyhalides :

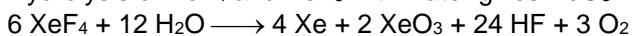
(I) XENON FLUORIDES :

Compounds	Structures	Hybridisation	Geometry	Shape
XeF_2		sp^3d	trigonal bipyramidal	linear
XeF_4		sp^3d^2	octahedral	square planar
XeF_6		sp^3d^3	pentagonal bipyramidal	distorted octahedron

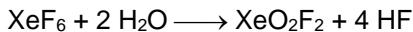
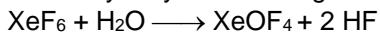
PREPARATION :


Xenon reacts directly with fluorine when the gases are heated at 300-600°C in a sealed nickel vessel and the products formed depend on the Xe / F_2 ratio.

PROPERTIES :


These are colourless (white) solids. They can be sublimed at room temperature and can be stored indefinitely in nickel or monel (an alloy of nickel) containers.

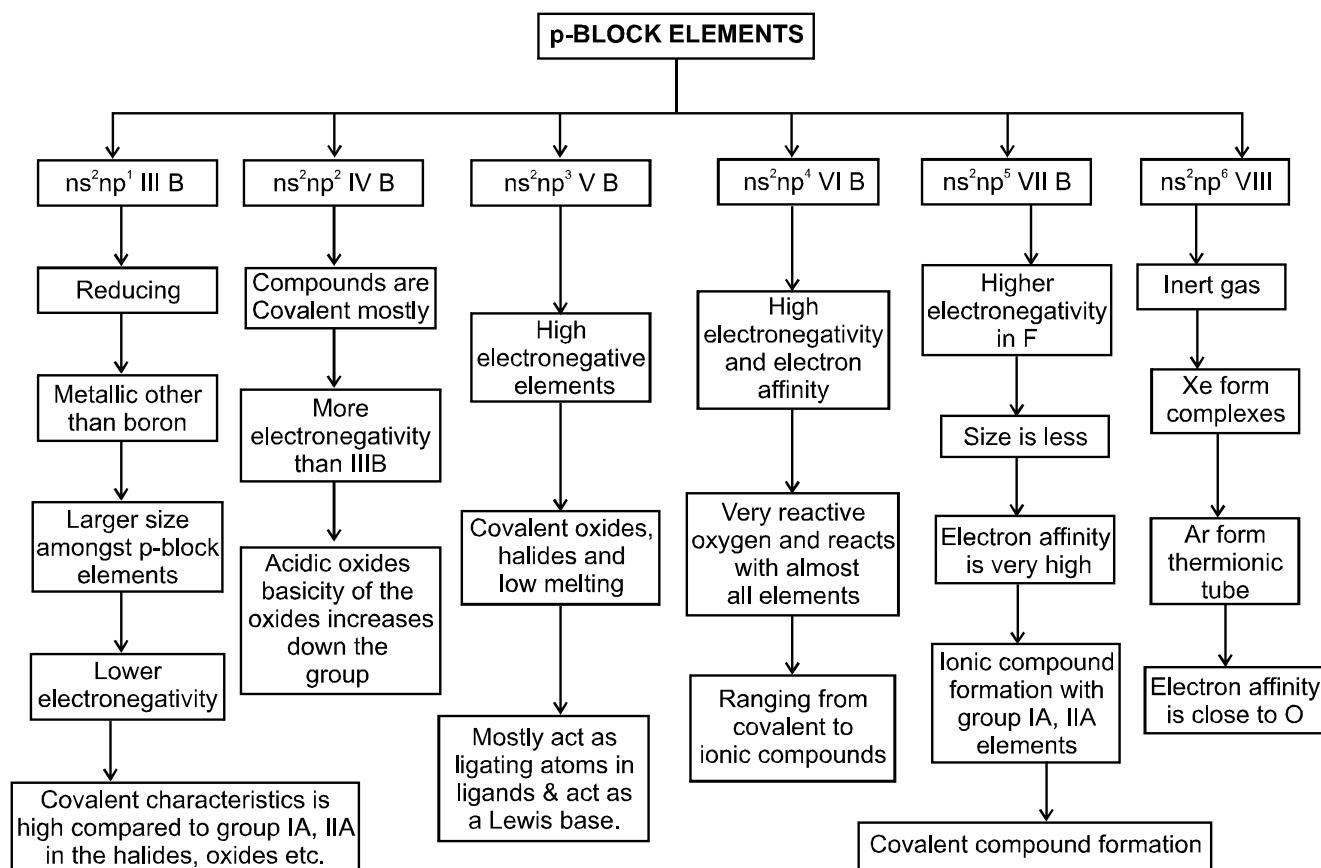
Chemical properties:

(II) XENON-OXYGEN COMPOUNDS :

Hydrolysis of XeF₄ and XeF₆ with water gives XeO₃.

Partial hydrolysis of XeF₆ gives oxyfluorides, XeOF₄ and XeO₂F₂.



XeO_3 is a colourless explosive solid and has a pyramidal molecular structure. XeOF_4 is a colourless volatile liquid and has a square pyramidal molecular structure.

USES :

- (i) Helium is a non-inflammable and light gas. Hence, it is used in filling balloons for meteorological observations. It is also used in gas-cooled nuclear reactors.
- (ii) Liquid helium (b.p.4.2 K) finds use as cryogenic agent for carrying out various experiments at low temperatures.
- (iii) Helium is used to produce and sustain powerful superconducting magnets which form an essential part of modern NMR spectrometers and Magnetic Resonance Imaging (MRI) systems for clinical diagnosis.
- (iv) Helium is used as a diluent for oxygen in modern diving apparatus because of its very low solubility in blood.
- (v) Neon is used in discharge tubes and fluorescent bulbs for advertisement display purposes. Neon bulbs are used in botanical gardens and in green houses.
- (vi) Argon is used mainly to provide an inert atmosphere in high temperature metallurgical processes (arc welding of metals or alloys) and for filling electric bulbs.
- (vii) Argon is also used in the laboratory for handling substances that are air-sensitive.
- (viii) Xenon and Krypton are used in light bulbs designed for special purposes.

